Luminescent, bimetallic AuAg alloy quantum clusters in protein templates.
نویسندگان
چکیده
We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1 : 1 molar ratio reaction mixture of Au(QC)@BSA and Ag(QC)@BSA suggested that the alloy clusters could be Au(38-x)Ag(x)@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ∼1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different steady state and time resolved excited state luminescence profiles compared to the parent clusters. Tuning of the alloy composition was achieved by varying the molar ratio of the parent species in the reaction mixture and compositional changes were observed by mass spectrometry. In another approach, mixing of Au(3+) ions with the as-synthesized Ag(QC)@BSA also resulted in the formation of alloy clusters through galvanic exchange reactions. We believe that alloy clusters with the combined properties of the constituents in versatile protein templates would have potential applications in the future. The work presents interesting aspects of the reactivity of the protein-protected clusters.
منابع مشابه
Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles.
Metal nanoparticles (NPs) are of great interest due to their special optical, [ 1–3 ] electronic, [ 4–8 ] and catalytic [ 9,10 ] properties. [ 11 ] Among metal NPs, Au NPs have been investigated most extensively because of their facile preparation, resistance to oxidation, and surface plasmon resonance (SPR) band that can absorb and scatter visible light. [ 3 ] Core/ shell and alloy bimetallic ...
متن کاملLocal-field enhancement and plasmon tuning in bimetallic nanoplanets.
A full-interaction electromagnetic approach is applied to interpret the local- and far-field properties of AuAg alloy nanoplanets (i.e. a central cluster surrounded by small "satellite" clusters very close to its surface) fabricated in silica by ion implantation and ion irradiation techniques. Optical extinction spectroscopy reveals a large plasmon redshift which is dependent on the irradiation...
متن کاملAg7Au6: a 13-atom alloy quantum cluster.
Stable gold cluster molecules of the type Au11, [1a] Au13, [1b,c] and Au55, [1d] have been fascinating and were some of the early molecular nanosystems synthesized. Quantum phenomena such as Coulomb blockade were demonstrated with them. Unusually intense luminescence and chemical reactivity of molecular clusters or quantum clusters (QCs) of noble metals, for example gold have attracted intense ...
متن کاملGrowth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes
BACKGROUND Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the siz...
متن کاملFabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances.
Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 14 شماره
صفحات -
تاریخ انتشار 2012